
APPENDIX

A. Implementation Details on Fine-Grained Region Proposal

In this section we discuss additional implementation de-
tails to obtain candidate regions.

From multi-view RGBD renderings of an asset, we obtain
aggregated point cloud P 2 RN⇥3 by projecting fore-ground
pixels (we obtain this mask from the rendering simulator) of
each view to world frame and uniformly down-sample the
point cloud. Then for each RGB image, we extract patch-
wise features from DINOv2 with registers (ViT-L14) [14]
and perform bilinear interpolation to upsample the features
to original image size.

To fuse the DINOv2 features from all views to P , we adapt
the following procedure from [109]: for each point p 2 P ,
we compute it’s corresponding pixel on each camera view.
We consider it to be visible in a camera view if the projection
depth is close to the depth image reading at that pixel by a
small threshold. The fused feature for p is the average of
DINOv2 features on it’s corresponding pixel across all the
views p is visible.

With the procedure above we obtain global feature field
Fglobal 2 RN⇥d, and then we apply PCA to obtain Freduced 2
RN⇥3 to mitigates affect of local texture or appearance on
cluster result.

We group object points into candidate regions by running
clustering algorithm on Freduced. Since our data process-
ing pipeline handles over-segmentation better than under-
segmentation (reasons established in next su-bsection), we
first run Mean Shift on the features, and if it found less
than 5 clusters over the object, we re-run the k-means to
find 5 clusters. Specifically, for articulated objects such as
cabinets, we obtain the per-link mask from the rendering
process and run the aforementioned clustering pipeline for
each link individually. This allows us to find finer object
regions such as drawer knobs.

B. Implementation Details on Task Instruction Proposal and
Region-Instruction Mapping

After we obtain the region labels for all object points, we
visualize the clustering on the view we selected with the
following procedure: for each foreground pixel in that view,
we compute the corresponding 3D point with using the depth
map. Then we find its closest neighbor p in the aggregated
pointcloud P , and use the label rp as the region label for
this pixel.

We assign a unique color to all pixels within each cluster
and overlay this on the original RGB image. We input the
cluster visualization with the original image to the VLM
prompt below. The prompt contains only generic instructions
and a few text-based examples to illustrate expected output
and format. VLM is queried to propose a set of task
instructions {T1, ..., TJ} closely related to the object, and
associate each instruction with a single candidate region. We
use GPT-4o [10] for all our experiments.

To convert the instruction-region matching to continuous
affordance map A 2 [0, 1]H⇥W , we average the features

for points in the corresponding region and calculate cosine
similarity score of this reference feature and Fglobal. We
project this to each camera view following the same pro-
cedure as we visualize cluster results, i.e. for each pixel,
find its corresponding 3D point’s nearest neighbor in P and
assign that point’s value. All values below 0 are set as 0
to ensure the correct value range of the obtained affordance
map.

We found over-segmentation by the clustering step is
preferred over under-segmentation. When a object part is
over-segmented, empirically GPT-4o is still capable for cor-
rectly associating the instruction with one of the regions,
and through the cosine similarity calculation, the other not
selected regions within the same part is likely still computed
to have high cosine similarity to the reference feature. On the
other hand, under-segmentation could cause the affordance
map to highlight regions that are not most closely related
to the instruction, which is not desired for our purpose of
finding fine-grained affordance.

We obtain triplets of RGB object image, task instruction,
and affordance map (I , T , A), from our data extraction
pipeline. We further process the affordance map by setting all
values below a threshold 0.5 to 0, with the purpose to create a
ground-truth map more focused on the most relevant regions.
We then apply a Gaussian blur to A with kernel size = 3,
to accommodate for the boundaries created by the previous
thresholding process and improve training stability.

Our model contains 3 FiLM-conditioned convolution lay-
ers with output channels [256, 64, 1]. We use linear layers to
predict channel transformations from language embeddings.
We initialize the linear layers with weights to be 1 and bias
to be 0, adapted from implementation in RT-1 [118]. We
use Adam optimizer with a learning rate of 0.001. We train
our model for 30 epochs with a batch size 8, which takes
approximately 12 hours on a single NVIDIA A6000 GPU.

C. Mturk Interface

Fig 6 is the Amazon MTurk interface we use to collect
human affordance annotations on our valuation sets and
DROID images.

D. MTurk Task Assignments and Label Post-processing

To obtain the ground-truth for evaluations, we prompt the
image and corresponding text to Amazon MTurk workers
and ask them to draw a fine-grained mask on the image for
the region they believe corresponds to the text. On average,
worker complete labelling assignment for each image in 40
seconds, for which they are compensated for 0.6 dollars.

For each (text, image) query pair, we collect annotations
from 7 MTurk workers and apply a pixel-wise voting scheme.
A pixel is marked as part of the ground truth mask (value
1) if more than three workers label it accordingly.

E. Details for Evaluation on AGD20K Dataset

We evaluate our model on the easy split of AGD20K and
compare with the baseline performance reported in [117].
To avoid numerical instability in KLD computation as we

System Prompt

Given (a) the category of an object , (b) a reference image of the original image , (c) an image

visualizing clustering of the object into a few regions , each indicated by a distinct color , and (d)

a related list of used colors , please:

1. Identify specific regions of the object that serve different purposes in various manipulation tasks.

- Focus on crucial parts and offer detailed and fine -grained descriptions of the regions of interest.

- For each identified region , provide both a Region Description and a Region for action xxx. For example ,

"handle of plastic bag -- region for agent to hold and lift the bag." Use double quotes only to

represent a string element.

- Avoid using multiple single quotes for an element. For example , instead of "adjusting the lamp �s

position", use "adjusting the lamp �s position ." Avoid trivial regions like: power cord , power plug ,

seal , small edges , small corners , different sides of the walls or body , interior base , or exterior

edge.

2. Match the colored region in (c) with the proposed task in step 1, considering the functionality and

the granularity of the task. The requirements are as follows:

- Compare the original image to the proposals to find the colored region that matches the description ,

considering the context provided by the explanation. For example , if a given proposal image indicates

that the red region covers the handle , and the description mentions a task related to the handle ,

you should identify the answer as "Red."

- When the described region is clustered into more than one cluster on the image , pick the cluster that

is most appropriate according to the explanation provided in the description.

- If the described region is within a cluster but still contains other parts of the object , you should

still select the cluster.

- Consider the reason/explanation to make the final decision , and provide your best guess.

If you cannot identify the counterpart on the given image , give your best guess. Do not say you cannot

identify something.

User Prompt

The first image is the original image of the object , and the second image shows the clustering of regions

in colors.

This is the color list: {CLUSTER_COLORS}, and this is the object category :{ OBJ_CATEGORY }.

I need you to propose the task -guided fine -grained region description and match region description with

the one most appropriate color in the images.

Output format: Start with the word "ANSWER: ", followed by a dict , where each key -value pair is in the

format of "region description -- region for xxx" : "Color", separated by commas. Specifically , the

content after "ANSWER: " should be parseable with Python �s ast.literal_eval () and nothing else. All

elements in the dict keys or values should be enclosed by double quotes only. The color could only be

one color , with the first letter of the color name capitalized and the rest in lowercase.

Fig. 6: Amazon MTurk Annotation Interface.

consider per-pixel affordance instead of per-image affordance
as in other works, we post-process our model’s prediction by
adding a small ✏ to each pixel before normalization.

F. Details for Evaluation on DROID Images

We implement the baselines as follows:
• CLIP: we obtain the per-patch visual feature of query

image and use bilinear interpolation to original image

height and width. We compute the per-pixel cosine
similarity with the text feature of query instruction and
clip the minimum value to be 0.

• OpenSeeD: Since OpenSeeD is an open-vocabulary
segmentation model, we use the same query instructions
as for other methods to query the predicted mask. We
set all pixels in the predicted object mask to 1 and 0
otherwise. The prediction image is all 0 if no mask is
found.

G. Policy Learning in Simulation – Environment Setup

Our simulation environment in OmniGibson contains one
Fetch robot, for which we use operational space controller for
the end-effector pose, multi-finger gripper controler for the
gripper, and kept location of the robot base fixed. Grasping
is physically simulated for all tasks.

We use a key-frame based policy for both demonstrations
and learnt policies. Key-frames are commonly used by prior
works [112, 113, 119–121] as “important or bottleneck steps
of gripper during task execution”. To execute an action <end-
effector pose, gripper action>, we first command the end-
effector controller of an interpolated trajectory from current
to target pose, then execute the gripper action afterwards.

We use 3 cameras at the front, left, and right of the
workspace for Pouring and Inserting. We use 2 cameras
on both sides of the robot for Opening as the articulated
objects are typically large in size and would occlude the
other cameras.

H. Policy Learning in Simulation – Tasks

Below we discuss the details of environment setup,
scripted policy steps, success criteria, and evaluation gen-
eralization setting for each task.

Pouring The environment includes a beer bottle, a bowl,
and a pot plant. The scripted policy involves four key-frames:
reaching a pre-grasp pose next to the bottle, grasping the
bottle, lifting and moving it next to the bowl, and tilting it
to pour into the bowl. Success is defined by the alignment
and tilting of the bottle’s opening directly over the bowl.

At training time, object poses are randomized within a
[±5cm, ±3cm, 0] range, with the bowl and the pot plant po-
sitions randomly swapped. This randomization is maintained
during evaluations to test the system with varied object poses.

Different object models for the beer bottle and bowl are
used for the novel object instance evaluation. The beer bottle
is replaced with a Coke can in the novel object category
evaluation. For the novel instruction, the task is changed to
watering the pot plant.

Opening The task environment features a cabinet with a
revolute door. The task sequence includes two steps: reaching
and grasping the cabinet door handle, followed by pulling it
open. The task is considered successful if the door opens to
at least 45 degrees.

During training, the position and orientation of the cabinet
are randomized within a range of [±5cm, ±5cm, 0] for
position, and ±15 degrees around the z-axis for rotation. This

randomization is also applied during evaluations to assess
performance with varied object poses.

For the novel object instance evaluation, a different cabinet
model is used. A small refrigerator substitutes the cabinet in
the novel object category setting, testing adaptability to dif-
ferent objects. Novel instruction scenarios are not evaluated
for this task.

Insertion The environment contains a marker, a carrot, and
a pencil holder. The task involves two key steps: picking
up the marker and positioning it directly above the pencil
holder’s opening in an upright orientation. The task is
considered successful if the marker is in the holder.

During training, the positions of the pen and carrot are
randomized within ±1.5 cm in the x-direction, and the pencil
holder is adjusted within ±3 cm in both x and y directions.
The pen and carrot positions are also randomly swapped. The
same randomization parameters are used during evaluation.

A different marker model, varying in color and size, is
used for evaluating a new object instance. The pencil holder
is replaced with a coffee cup for the novel object category
evaluation. The task of inserting the pen is changed to
inserting the carrot for the novel instruction evaluation.

I. Policy Learning in Simulation – Details on Baseline Visual
Representations

Herein we introduce our implementation for each baseline
visual representations.

• Vanilla policy: original rgb observation from each cam-
era.

• w/ DINOv2: we first obtain per-pixel DINOv2 features
for the rgb image of each camera. Then, we have a
trainable 1D convolution layer with kernel size of 1 to
reduce the number of channels to 3.

• w/ CLIP: we obtain CLIP text embedding for each
detailed instruction for the task. Then we calculate the
cosine similarity against per-pixel CLIP visual embed-
ding of each camera observation.

• w/ Voltron [71]: we load a frozen Voltron (V-cond)
model and obtain the visual embedding conditioned on
task description. We interpolate the per-patch embed-
ding to pixel space, and use a trainable 1D convolution
layer with kernel size 1 to reduce the number of
channels from 384 to 3. We have also experimented with
using a trainable multi-head attention pooling layer for
feature extraction, as suggested by the original paper,
yet haven’t observed improved performance.

J. Training Details
We trained each policy for 4000 epochs. Training with

batch size of 3 on a single NVIDIA A40 GPU takes
approximately 16 hours for Pouring, and 8 hours for Opening
and Inserting.

During training, we normalized the channels for visual
observation by: normalize visual representation to (�1, 1),
clip (x, y, z) to the min and max workspace bounds, and
set depth for all out-of-bound points to 0. Additionally, we
append channels according to pixel location, following the

original implementations in RVT. We apply random cropping
augmentation to visual input during each training step.

K. Policy Learning in Real-World – Environment Setup
Our real-world evaluation platform uses a Franka arm

mounted in a tabletop setup built with Vention frames. Since
the learned policy outputs 6-DoF end-effector poses and
gripper actions, we use position control in all experiments,
which is running at a fixed frequency of 20 Hz. Specifically,
given a target end-effector pose in the world frame, we first
clip the pose to the pre-defined workspace. Then we perform
linear interpolation from the current pose of the robot to
the target pose with a step size of 5mm for position and
1 degree for rotation. To move to each interpolated pose,
we first calculate inverse kinematics to obtain the target
joint positions based on current joint positions using the
IK solver implemented in PyBullet [122]. Then we use the
joint impedance controller from Deoxys [123] to reach to the
target joint positions. Two RGB-D cameras, Orbbec Femto
Bolt, are mounted on the left side and the right side of the
robot facing the workspace center. The cameras capture RGB
images and point clouds at a fixed frequency of 20 Hz.

L. Policy Learning in Real-World –Tasks
We mirror the setup in simulation to evaluate on three

similar tasks in the real-world: watering plant, opening
drawer, and inserting pen into pen holder. We collect a total
of 10 demonstrations for each task and train a policy using
the same training procedure described above. The demon-
strations are collected using kinesthetic teaching, consisting
of varying numbers of keyframes (as described above) that
are required to complete the task. Success rates are visually
examined by the operator. 10 trials with varying object
configurations are performed, and the average success rate
for each task is reported.

	Introduction
	Related Works
	Learning and Discovering Visual Affordance for Robotics
	Pre-trained Visual Representation for Manipulation
	Foundation Models for Robotics

	Method
	Extracting Affordance Annotations
	Learning Task-conditioned Affordance Model
	Policy Learning with Affordance as Observation Space

	Experiments
	Task-Conditioned Affordance Prediction
	Policy Learning in Simulation
	Policy Learning in the Real World

	Conclusion & Limitations
	References
	Appendix
	Implementation Details on Fine-Grained Region Proposal
	Implementation Details on Task Instruction Proposal and Region-Instruction Mapping
	Mturk Interface
	MTurk Task Assignments and Label Post-processing
	Details for Evaluation on AGD20K Dataset
	Details for Evaluation on DROID Images
	Policy Learning in Simulation – Environment Setup
	Policy Learning in Simulation – Tasks
	Policy Learning in Simulation – Details on Baseline Visual Representations
	Training Details
	Policy Learning in Real-World – Environment Setup
	Policy Learning in Real-World –Tasks

